Федеральное агентство научных организаций Федеральное государственное бюджетное учреждение науки Институт иммунологии и физиологии Уральского отделения Российской академии наук ФГБУН ИИФ УрО РАН

УТВЕРЖДАЮ

Директор, академик_____ \$

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Биофизика сократительных систем

Направление подготовки: 30.06.01 Фундаментальная медицина

Направленность (профиль подготовки): биофизика

Квалификация

выпускника:

Исследователь. Преподаватель-

исследователь

Форма обучения: очная

1. Цели и задачи дисциплины углубленное изучение фундаментальных основ молекулярных механизмов сократительной функции мышц и её регуляции, а также функции некоторых моторных белков немышечной подвижности.

2. Место дисциплины в структуре ОПОП аспирантуры

Дисциплина «Биофизика сократительных систем» относится к специальным дисциплинам отрасли науки и научной специальности, включенной в обязательные дисциплины образовательной составляющей ОПОП по специальности 03.01.02 – «Биофизика».

3. Перечень планируемых результатов обучения по дисциплине

В результате освоения дисциплины обучающийся должен:

Знать: основной круг задач, встречающихся в области биофизики

Уметь: определять перспективные направления научных исследований в области биофизики, состав исследовательских работ, определяющие их факторы; разрабатывать научно-методологический аппарат и программу научного исследования; отечественный и зарубежный опыт по тематике исследования; работать с источниками патентной информации; использовать указатели Международной патентной классификации для определения индекса рубрики; проводить информационно-патентный поиск; осуществлять библиографические процессы поиска; формулировать научные гипотезы, актуальность и научную новизну планируемого исследования

Владеть: навыками составления плана научного исследования; навыками информационного поиска; навыками написания аннотации научного исследования

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетных единицы, 72 ак. часов. Время проведения 1,2 семестры

Таблица 1 Структура дисциплины, виды и объем учебной работы

№ п/п	Разделы дисциплины	Эеместр	включ р	ы учебы ная само аботу с удоемко	остоятел гуденто	іьную в	Коды компетенций	Формы текущего контроля успеваемост и (по неделям
)	Л	ЛР	П3 (C)	СР		семестра) Форма промежуточ

		1	l		l	1	1	
								ной аттестации
								(по
								семестрам)
1	Структурная	1	4	4	4	4	УК-1, УК-2, УК-	УО
	организация	1		•			3, ОПК-1, ОПК-2,	
	сократительного						ОПК-3, ОПК-4,	
	-						ПК-1, ПК-2, ПК-	
	аппарата мышц.						3, TIK-4	
) / v	1	2	4			,	WO
2	Молекулярный	1	2	4	_	2	УК-1, УК-2, УК-3,	УО
	механизм						ОПК-1, ОПК-2,	
	мышечного						ОПК-3, ОПК-4,	
	сокращения						ПК-1, ПК-2, ПК-3,	
							ПК-4	
3	Цикл гидролиза	1	2	4	4	2	УК-1, УК-2, УК-3,	УО
	АТФ в мышце						ОПК-1, ОПК-2,	
							ОПК-3, ОПК-4,	
							ПК-1, ПК-2, ПК-3,	
							ПК-4	
4	Связь структура-	2	4	4	_	4	УК-1, УК-2, УК-3,	УО
	функция						ОПК-1, ОПК-2,	
	сократительного						ОПК-3, ОПК-4,	
	аппарата мышц						ПК-1, ПК-2, ПК-3,	
	инпарата мышц						ПК-4	
5	Немышечные	2	4			2	УК-1, УК-2, УК-3,	УО
	молекулярные	_	_	_			ОПК-1, ОПК-2,	30
	• •						ОПК-1, ОПК-2, ОПК-4,	
	моторы						ПК-1, ПК-2, ПК-3,	
6	M	2	2	0	0		ПК-4	VO
О	Методы	2	2	8	8	_	УК-1, УК-2, УК-3,	УО
	исследования						ОПК-1, ОПК-2,	
	молекулярных						ОПК-3, ОПК-4,	
	механизмов						ПК-1, ПК-2, ПК-3,	
	мышечного						ПК-4	
	сокращения и его							
	регуляции							
	ИТОГО		18	24	16	14		

ПРИМЕЧАНИЕ: КР- контрольная работа, Π – лекции, Π 3 – практические занятия, Π – лабораторные работы; СР – самостоятельная работа аспиранта.

5. Содержание разделов дисциплины

Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела
п/п		
1	Структурная организация	Тема 1. Структура саркомера.

Таблица 2

	сократительного аппарата	Тема 2. Структура толстых нитей.			
	мышц.	Тема 3. Структура тонких нитей.			
2	Молекулярный механизм	Тема 1. Модель Хаксли-Симмонса.			
	мышечного сокращения	Тема 2. Молекулярная структура миозина.			
		Тема 3. Рычажная модель силогенерации.			
		Тема 4. Модель двухшагового механизма			
		силогенерации.			
3	Цикл гидролиза АТФ в	Тема 1. Схема Лимна-Тейлора.			
	мышце	Тема 2. Схема 3G/			
4	Связь структура-функция	Тема1. Электронно-микроскопические исследования.			
	сократительного аппарата	Тема 2. Рентгенодифракционные исследования.			
	мышц				
5	Немышечные молекулярные	Тема 1. Кинезин.			
	моторы	Тема 2. Динеин.			
		Тема 3. Микротрубочковый мотор.			
6	Методы исследования	Тема 1. Механика мышечного волокна			
	молекулярных механизмов	Тема 2. Скачок температуры.			
	мышечного сокращения и	Тема 3. <i>In vitro</i> подвижная система.			
	его регуляции	Тема 4. Оптическая ловушка.			

6. Перечень лекций, семинарских, практических занятий, лабораторных и самостоятельных работ

Таблица 3 Перечень занятий и формы контроля

No	Наименование	Вид	Тема занятия	Форма текущего и
п/п	раздела	занятия	(самостоятельной работы)	промежуточного
	•		•	контроля
1	Структурная	Л	Саркомер как основная единица	УО
	организация		сократительного аппарата мышц.	
	сократительного	ЛЗ	Структура саркомера	P
	аппарата мышц.	С	Структура толстых и тонких	УО
			нитей	
2	Молекулярный	Л	Модель Хаксли-Симмонса.	УО
	механизм	ЛЗ	Молекулярная структура миозина	P
	мышечного	ЛЗ	Рычажная модель силогенерации	P
	сокращения			
3	Цикл гидролиза	Л	Схема Лимна-Тейлора	УО
	АТФ в мышце	С	Схема 3G	УО
4	Связь структура-	Л	Рентгеновская дифракция,	УО
	функция		эксперименты на мышцах и	
	сократительного		мышечных волокнах.	
	аппарата мышц	CP	Электронно-микроскопические	P
			исследования структуры	
			сократительного аппарата мышц.	
		C	Связь структура-функция	УО
			сократительного аппарата мышц	
5	Немышечные	Л	Клеточная подвижность	УО
	молекулярные		транспорт, деление.	
	моторы	CP	Миозин, кинезин и динеин.	P

		С	Немышечная подвижность	УО
6	Методы	Л	Обзор методов исследования	УО
	исследования		молекулярных механизмов	
	молекулярных		мышечного сокращения	
	механизмов	ЛЗ	Выделение мышечного волокна	P
	мышечного	CP	Механические эксперименты на	П
	сокращения и его		мышечном волокне, скачок	
	регуляции		температуры	
		CP	Эксперименты на in vitro	П
			подвижной системе	
		CP	Эксперименты на оптической	П
			ловушке	
Итс	говый контроль	<u> </u>		зачет

ПРИМЕЧАНИЕ: Виды занятий: Π – лекции, C – семинары, Π – практические занятия, Π – лабораторные занятия, Π – самостоятельная работа.

Формы текущего контроля: УО - устный опрос (собеседование), Р - реферат, Π - проект, \mathcal{L} - доклад, $K\Pi$ - конспект лекции, $\Gamma\mathcal{L}$ - групповая дискуссия, OCP — оценка сопоставимости результатов, $P\Pi$ — результат исследования (контроль качества и статистическая обработка) и др.

7. Информационные ресурсы

Таблица 4 Карта обеспечения учебно-методической литературой

№ п/п	Автор, название, место издания, издательство, год издания учебной и учебно-методической литературы	Количество экземпляров			
	Основная литература				
1	Бэгшоу К. Мышечное сокращение. Издательство: М.: Мир; 128 страниц; 1985 г. http://www.ozon.ru/context/detail/id/33505868/	1			
2	Рубин А.Б. Биофизика: В 2 томах. http://studentam.net/content/view/843/113/	1			
3	Основы физики и биофизики / под ред. А. И. Журавлева. – М.: Мир, $2005.$ – 383 с.	1			
4	Джаксон М.Б. Молекулярная и клеточная биофизика / под ред. А. П. Савицкого, А. И. Журавлева. – М.: Мир: БИНОМ. Лаборатория знаний, 2009. – 551 с.	1			
5	Антонов В.Ф. Физика и биофизика / В.Ф. Антонов, А.В. Коржуев. – М.: ГЭОТАР-Медиа, 2006. – 236 с.	1			
	Дополнительная литература				
1	Huxley A.F., Niedergerke R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 173(4412):971-3.	1			
2	Huxley H.E., Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. 1954 173(4412):973-6.	1			
3	Huxley, A. F., and R. M. Simmons. 1971. Proposed mechanism of force generation in muscle. Nature. 233:533-8.	1			

4	Huxley H. E. & W. Brown. 1967. The low-angle x-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. <i>J Mol Biol</i> 30, 383-434.	1
5	Lymn R.W. and E.W. Taylor. 1971. Mechanism of adenosine triphosphate hydrolysis by actomyosin. <i>Biochemistry</i> 10, 4617-24.	1
6	Holmes, K. C. 1997. The swinging lever arm hypothesis of muscle contraction. Curr. Biol. 7:112–8.	1
7	Bershitsky, S. Y., A. K. Tsaturyan, O. N. Bershitskaya, G. I. Machanov, P. Brown, R. Burns, and M. A. Ferenczi. 1997. Muscle force is generated by myosin heads stereospecifically attached to actin. Nature. 388:186–90.	1
8	Ferenczi, M. A., S. Y. Bershitsky, N. Koubassova, V. Siththanandan, W. I. Helsby, P. Panine, M. Roessle, T. Narayanan, and A. K. Tsaturyan. 2005. The "roll and lock" mechanism of force generation in muscle. Structure. 13:131–41.	1
9	Bershitsky, S. Y., and A. K. Tsaturyan. 2002. The elementary force generation process probed by temperature and length perturbations in muscle fibres from the rabbit. J. Physiol. 540:971–88.	1

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Таблица 5 Перечень печатных, технических и электронных средств обучения

No	Наименование	Вид	Форма доступа
Π/Π			
1	Мультимедийные презентации	электронный	Лаборатория
	лекций, семинаров		биологической
			подвижности,
			online-доступ
2	Web-ресурсы:	электронный	online-доступ
	http://www.mrc-lmb.cam.ac.uk/myosin/		
	http://www.med.upenn.edu/pmi/		
	Научная электронная библиотека		
	eLibrary		
	(http://www.elibrary.ru)		
	Ресурс научных статей Pubmed		
	(http://www.ncbi.nlm.nih.gov)		

8. Материально-техническое обеспечение

Таблица 6 Обеспеченность помещениями для аудиторных занятий и мультимедийного оборудования

No	Наименование	Наименование специализированных	Форма владения,
Π/Π	дисциплины	аудиторий, кабинетов, лабораторий и	пользования
		пр. с перечнем основного	(собственность,
		оборудования	оперативное управление,
			аренда и т.п.)
1	Биофизика	ФГБУН Институт иммунологии и	Собственность ИИФ
	сократительн	физиологии УрО РАН	
	ых систем	Актовый зал (к. 335),	
	DIX CHCTCM	Мультимедийное оборудование	
		(проектор, компьютер)	
		ФГБУН Институт иммунологии и	
		физиологии УрО РАН	
		Лаборатория биологической	
		подвижности (к. 119),	

Таблица 7 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

No	Наименование	Содержание	Учебно-методическое обеспечение
п/п	раздела	самостоятельной	
	-	работы	
1	Структурная организация сократительного аппарата мышц.	Анализ реферативных журналов и электронных источников с учетом содержания раздела дисциплины	Бэгшоу К. Мышечное сокращение. Издательство: М.: Мир; 128 страниц; 1985 г. http://www.ozon.ru/context/detail/id/33505868/
2	Молекулярный механизм мышечного сокращения	Анализ реферативных журналов и электронных источников с учетом содержания раздела дисциплины	Джаксон М.Б. Молекулярная и клеточная биофизика / под ред. А. П. Савицкого, А. И. Журавлева. — М.: Мир: БИНОМ. Лаборатория знаний, 2009. — 551 с.
3	Цикл гидролиза АТФ в мышце	Анализ реферативных журналов и электронных источников с учетом содержания раздела	Антонов В.Ф. Физика и биофизика / В.Ф. Антонов, А.В. Коржуев. – М.: ГЭОТАР-Медиа, 2006. – 236 с.

		дисциплины	
4	Связь структура- функция сократительного аппарата мышц	Анализ реферативных журналов и электронных источников с учетом содержания раздела дисциплины	Ferenczi, M. A., S. Y. Bershitsky, N. Koubassova, V. Siththanandan, W. I. Helsby, P. Panine, M. Roessle, T. Narayanan, and A. K. Tsaturyan. 2005. The "roll and lock" mechanism of force generation in muscle. Structure. 13:131–41.
5	Немышечные молекулярные моторы	Анализ реферативных журналов и электронных источников с учетом содержания раздела дисциплины	Бэгшоу К. Мышечное сокращение. Издательство: М.: Мир; 128 страниц; 1985 г. http://www.ozon.ru/context/detail/id/33505868/
6	Методы исследования молекулярных механизмов мышечного сокращения и его регуляции	Анализ реферативных журналов и электронных источников с учетом содержания раздела дисциплины	Джаксон М.Б. Молекулярная и клеточная биофизика / под ред. А. П. Савицкого, А. И. Журавлева. — М.: Мир: БИНОМ. Лаборатория знаний, 2009. — 551 с.

9. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Оценочные средства:

- для текущего контроля собеседование
- для промежуточной аттестации собеседование

По итогам обучения проводится зачет

Примерный перечень вопросов:

- 1. Сократительные и регуляторные белки саркомера.
- 2. Зависимость силы сокращения от длины саркомера.
- 3. Активация, связь pСа-сила.
- 4. Связь сила-скорость в мышце.
- 5. Терия скользящих нитей.
- 6. Мостиковая теория мышечного сокращения.
- 7. Биохимический цикл миозинового мостика. Схема Лимна-Тейлора.
- 8. Рычажная (lever arm) модель генерации силы молекулой миозина.

- 9. Модель поворота-застёгивания силогенерирующего шага молекулы миозина.
- 10. Преобразование энергии в мышце.
- 11. Немышечная подвижность.
- 12. Кинетические методы исследования молекулярного механизма силогенерации.
- 13. Экспериментальные модели для исследования функции сократительных белков.
- 14. Исследование связи структура-функция методом рентгеновской дифракции.
- 15. Методы исследования взаимодействия изолированных молекул мышечных белков.
- 16. Методы и возможности современной оптической микроскопии.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 30.06.01 Фундаментальная медицина

Автор, д.б.н.

Бершицкий С.Ю.

Программа заслушана и утверждена на заседании Ученого совета ИИФ УрО РАН «25»

сентября

2015 г., протокол № 7

Ученый секретарь Ученого совета

ИИФ УрО РАН

К.ф.-м.н.

MoS Р.М. Кобелева